Сплести нейросети: искусственный разум свяжут с мозгом человека

Где сегодня можно найти искусственный интеллект

ИИ есть почти где угодно — и это не преувеличение. Когда вы при помощи смартфона фотографируете что-либо, искусственный интеллект определяет лица людей, оптимизирует яркость и меняет экспозицию. Когда звоните в колл-центр — ИИ определяет, к какому специалисту вас нужно переадресовать. Когда переводите текст — ИИ подбирает верные значения слов и выстраивает предложение.

Некоторые устройства, в которых используется искусственный интеллект, давно уже созданы, хотя и не стали еще обыденной частью реальности: например, автономные авто и смарт-дома. А в Китае, например, построенная на искусственном интеллекте система Zero Trust помогала властям искать коррумпированных чиновников: за несколько лет она выявила больше восьми тысяч таковых. Так что сколько бы процентов людей ни были недовольны тем, что компьютеры постоянно умнеют, выбора нет: artificial intelligence — часть нашей жизни.

Нашли опечатку? Выделите фрагмент и нажмите Ctrl + Enter.

Машинное обучение оказалось ключом к развитию ИИ

Режимы съемки, основанные на машинном обучении

Именно машинное обучение оказалось главным толчком к развитию того, что сегодня принято называть искусственным интеллектом — по крайней мере, сегодня считают именно так.

Когда человек только рождается, он не знает об окружающем мире ровным счетом ничего. Он не умеет просто ходить — речь в данном случае не идет даже об общении с себеподобными.

Но он активно учится и поглощает всю получаемую с самых разных сторон информацию не худе какой-нибудь губки. Впитывает, пропускает через себя и становится умнее.

Постепенно человек учится самым невероятным вещам. Он садится за руль автомобиля и не врезается в другие машины в потоке, лихо крутит педали двухколесного велосипеда и даже не падает.

За десятки лет специалисты в отрасли искусственного интеллекта пришли к выводу, что создать подобие нашего разума даже для выполнения узкой задачи невозможно.

Тем не менее, можно разработать программу, которая будет обучаться. Тогда с течением времени она будет становиться все более полезной.

Возникает еще один вопрос — проблема со скоростью обучения. Каким образом сделать так, чтобы программа становилась умнее не за годы, а за месяцы.

Ее актуальность закономерна. Человечество развивается настолько интенсивно, что даже через пару лет в какой-то технологии не будет никакого смысла — о десятках даже речи не идет.

И наиболее эффективное решение в данном случае в 2017 году становится основным конкурентным преимуществом на мировой арене — по крайней мере, в пользовательской электронике точно.

Искусственный интеллект, который подражает нашему

Подражание человеку на базе ИИ

В середине прошлого века энтузиасты считали, что для создания искусственного интеллекта необходимо создать железную копию человеческого организма.

Копия должна обладать аналогами наших органов чувств и даже рассудком — примерно эта концепция обыгрывается и в фильме Бегущий по лезвию 2049.

Этот подход до сегодняшнего дня так и остался только лишь в фильмах. До создания копий людей технологии так быстро не дошли. Думаю, это к лучшему.

Тем не менее, нам уже под силу создать технологии, которые будут выполнять не все человеческие функции, но хотя бы их часть. И делать это более качественно, чем люди.

По этому принципу работает сортировка снимков по изображенных на них людях в фотографиях, которую активно использует Apple, или классификация картинок по содержанию в Pinterest.

Существование описанных выше технологий стало возможным благодаря использованию, так называемого, машинного обучения, которое и дало толчок развития ИИ.

В машинном обучении используются алгоритмы обработки и анализа данных, после чего происходит принятие того или иного решения — совершение наиболее оптимального выбора.

С помощью машинного обучения программное обеспечение не заставляют выполнять задачу по конкретному принципу, но учиться делать это самостоятельно.

Именно с помощью него Apple добилась правильной работы портретного режима, который появился в iOS 10, и совершенствует портретное освещение из iOS 11.

Вопрос о разуме

«Искусственный интеллект — наука и технология создания интеллектуальных машин, в особенности интеллектуальных компьютерных программ. Это связано с аналогичной задачей использования компьютеров для понимания человеческого интеллекта, но ИИ не должен ограничиваться биологически наблюдаемыми методами». Такое определение дал термину тот, кто его и придумал в 1956 году, — американский программист Джон Маккарти.

В своей брошюре «What is artificial intelligence» Маккарти вторым же пунктом дает определение интеллекта: «вычислительный компонент способности достигать целей». Исходя из этого, ИИ можно описать как способность машины обучиться определенной способности и выполнять ее не хуже, чем самые способные из людей.

В оригинале цитаты двумя абзацами выше Маккарти использовал слово «intelligent», что можно перевести как «разумный». Однако мы сознательно этого не делаем. «Наличие интеллекта не предполагает наличие сознания. Это — распространенное заблуждение, принесенное в мир писателями научной фантастики», — пишет в своей статье «ИИ для динозавров» специалист в области программного обеспечения Адам Маккей. Компьютер может обыграть лучших из лучших в го, шахматы или «Свою игру», но осознать свое достижение он попросту не способен.

Сакральное против познания

С одной стороны, мы полагаем, что эмоциональность — сакральный дар, исключительная привилегия людей. С другой — знаем о ней слишком мало, рассказывает специалист по ИИ и машинному обучению и основатель портала 22century.ru Сергей Марков. По его мнению, отказ от восприятия эмоциональности как чего-то священного позволит найти новые методы для изучения эмпатии. С помощью обратной разработки (исследование готового устройства или программы с целью понять принцип его работы и обнаружить неочевидные возможности. — Прим. T&P) исследования нейронных сетей и машинного обучения можно узнать что-то принципиально новое о человеческой эмоциональности. «Машинное обучение позволяет в ряде случаев, что называется, поверить гармонию алгеброй — на смену догадкам и гипотезам приходит более надежное знание, основанное на статистике больших данных», — полагает Марков.

Что такое машинное обучение

Не стоит путать понятия Data science и Machine learning. Эти инструменты во многом пересекаются, но всё же они разные и каждый со своими задачами. Также в этой статье мы раз и навсегда разберемся, как не смешивать в одну кучу машинное обучение, искусственный интеллект и нейросети.

Data science — наука о методах анализа данных и извлечения из них ценной информации, знаний. Она пересекается с такими областями как машинное обучение и наука о мышлении (Cognitive Science), а также с технологиями для работы с большими данными (Big Data). Результатом работы Data science являются проанализированные данные и нахождение правильного подхода для дальнейшей обработки, сортировки, выборки, поиска данных.

Например, есть несвязные данные о финансовых операциях затрат предприятия и данные контрагентов. Между собой эти данные связаны исключительно через промежуточные банковские данные или даты и время операций. В результате глубокого машинного анализа можно через промежуточные данные выяснить, какой контрагент является самым затратным.

Машинное обучение или Machine learning – один из разделов AI, алгоритмы, позволяющие компьютеру делать выводы на основании данных, не следуя жестко заданным правилам. То есть, машина может найти закономерность в сложных и многопараметрических задачах (которые мозг человека не может решить), таким образом находя более точные ответы. Как результат – верное прогнозирование.

Нейронная сеть при помощи искусственных нейронов моделирует работу человеческого мозга (нейронов), решающего определенную задачу, самообучается с учетом предыдущего опыта. И с каждым разом совершает все меньше ошибок. Нейросети являются одним из видов машинного обучения, а не отдельным инструментом.

Цель машинного обучения и сферы его применения

Поэтому в первую очередь машинное обучение призвано давать максимально точные прогнозы на основании вводных данных, чтобы владельцы бизнесов, маркетологи и сотрудники могли принимать верные решения в своей работе.  В результате обучения машина может предсказывать результат, запоминать его, при необходимости воспроизводить, выбирать лучший из нескольких вариантов.

На данный момент машинное обучение охватывает широкий спектр приложений от банков, ресторанов, заправок до роботов на производстве. Новые задачи, возникающие практически ежедневно, приводят к появлению новых направлений машинного обучения.

Научить эмоциям

Нетривиальная задача создания эмоционального ИИ упрощается с появлением новых инструментов вроде машинного обучения. Сергей Марков описывает этот процесс следующим образом: «Можно взять несколько сотен тысяч аудиозаписей человеческих высказываний и попросить группу людей-разметчиков сопоставить с каждой из этих фраз набор маркеров „эмоционального алфавита“. Затем случайным образом отбираются 80% фраз — на этой выборке нейросеть обучают угадывать эмоциональные маркеры. Оставшиеся 20% можно использовать, чтобы убедиться в исправной работе искусственного интеллекта». В другой модели обучения, которую описывает Марков, нейросеть получает бо́льшую самостоятельность. В ней ИИ сам категоризирует фразы по схожей эмоциональной окраске, темпу речи и интонации, а позже учится синтезировать свои высказывания на основе полученных категорий. Так или иначе, главным ресурсом для обучения искусственного интеллекта становятся большие массивы данных.

Искусственный интеллект — это пока всё с приставкой «умный»

Причина того, что базовые телефонные возможности можно считать искусственным интеллектом, в том, что на самом деле есть два типа ИИ. Слабый или узконаправленный ИИ описывает любую систему, предназначенную для выполнению узкого списка задач. К примеру, Google Assistant или Siri, являясь довольно мощными ИИ, все же выполняют довольно узкий список задач. Они получают голосовые команды и возвращают ответы, либо запускают приложения. Исследования в области искусственного интеллекта питают эти функции, но они считаются «слабыми».

В противоположность этому, сильный ИИ — известный также как общий искусственный интеллект, или «полный ИИ» — это система, способная выполнять любую человеческую задачу. И она не существует. Поэтому любое «умное» приложение — это все еще слабый искусственный интеллект.

И хотя смысл может быть весьма расплывчатым, практические исследования в области искусственного интеллекта настолько полезны, что, вероятно, уже вошли в вашу повседневную жизнь. Каждый раз, когда ваш телефон автоматически запоминает, где вы припарковались, распознает лица на ваших фотографиях, получает поисковые предложения или автоматически группирует все ваши снимки с выходных, вы так или иначе касаетесь искусственного интеллекта. В определенной степени «искусственный интеллект» на самом деле просто означает, что приложения будут чуть умнее, чем мы привыкли. Едва ли метка «ИИ» сейчас означает хоть что-нибудь внятное с практической точки зрения.

Краткая история возникновения нейронных сетей

Задумываться над построением нейронных сетей люди начали с развитием нейрофизиологии. Чем больше информации получали ученые о процессах, происходящих в их собственном мозге, тем более широкие перспективы открывались перед нейронными сетями. Главной проблемой вплоть до конца XX века являлось отсутствие серьезных массивов данных – исследователям приходилось в основном работать с текстами, строить семантические карты языков, учить программы распознавать синтаксические структуры и т.д.

Все изменилось с появлением и распространением интернета. Сегодня для обучения нейронных сетей доступны огромные массивы данных, включая мультимедиа-библиотеки. Благодаря такой базе, люди могут вкладывать меньше труда в создание программ, используя обучаемость нейронных сетей. Например, в ПО для перевода PROMT было вложено огромное количество трудо-часов лингвистов и программистов, тогда как сервис Google Translate уже в ближайшем будущем сможет предоставлять более качественный результат при гораздо меньших усилиях со стороны авторов, основываясь на гигантской базе текстов.

ПО ТЕМЕ: 23 экстремальных селфи (фото и видео) Instagram в местах, где легко расстаться с жизнью.

Что нужно для качественного машинного обучения

Машинное обучение строится на трех китах:

А) данные – базовая информация, предоставить которую мы обычно просим клиента. Сюда входят любые выборки данных, работе с которыми нужно обучить систему;

Б) признаки – эта часть работы проводится в тесном сотрудничестве с клиентом. Мы определяем ключевые бизнес-потребности и совместно решаем какие именно характеристики и свойства должна отслеживать система в результате обучения;

В) алгоритм – выбор метода для решения поставленной бизнес-задачи. Эту задачу мы решаем без участия клиента, силами наших сотрудников.

Данные (Data)

Чем больше данных мы загрузим в систему, тем лучше и точнее она будет работать. Сами данные напрямую зависят от задачи, которая стоит перед машиной.

Например, чтобы научить почту отфильтровывать спам от важных писем, необходимы примеры. И чем больше их выборка, тем лучше. Таким образом система учится воспринимать конкретные слова – «Купить», «Дополнительный доход», «Зарабатывай дома», «Деньги», «Кредит», «Увеличение потенции» – как признаки спама и отправлять такие письма в отдельную папку.

Исходные данные для других задач будут иными. Чтобы советовать покупателю товары, которые могут его заинтересовать, нужна история совершенных им покупок. Чтобы предсказать изменение цен на рынке, нужна история цен.

Самая сложная и одновременно объемная часть работы – сбор этих самых данных. Существует два метода сбора данных: вручную и автоматически. Ручной метод гораздо более медленный, но при этом точный. Автоматический же гораздо более быстрый, но при этом допускает большее количество ошибок.

Хорошая выборка данных дорогого стоит, ведь именно она отвечает за точность прогнозирования, которую вы получите в итоге

Очень важно не ограничивать сбор данных человеческим мышлением, а предоставлять максимум разрозненной информации, поскольку машина может увидеть пользу и взаимосвязи там, где человек их не заметит

Признаки (свойства, метрики, фичи, характеристики, features).

Например, в случае с автомобилем признаками будут пробег, количество цилиндров, максимально возможная скорость. В случае с покупателем: возраст, пол, образование, уровень дохода и т.д. В случае с животными: порода, рост, длина от кончика хвоста до носа, окрас.

Поскольку правильность свойств напрямую влияет на результат, который вы получите, их отбор занимает зачастую больше времени, чем сам процесс машинного обучения. Здесь главное – не ограничивать набор характеристик, исходя из личного мнения, чтобы не исказить машинное восприятие. А вместе с ним и конечный результат.

Эти данные являются результатами химического анализа вин, выращенных в одном регионе в Италии, но полученных из трех разных сортов. Анализ определил 13 компонентов, найденных в каждом из трех типов вин. Именно исходя из компонентов вина можно определить его класс.

Алгоритм (Algorithm)

Система последовательных операций для решения определенной задачи. Иными словами – метод решения. Под каждую конкретную задачу можно подобрать отдельный изящный алгоритм. Именно от выбранного метода напрямую зависит скорость и точность результата обработки исходных данных.

Бывают случаи, когда даже идеально написанные алгоритмы не помогают решать поставленные бизнес-задачи. Например, если вы хотите увеличить количество кросс-продаж на сайте и уверены, что для этого нужно просто улучшить алгоритм рекомендации товаров. Но при этом не знаете, что ваши клиенты приходят по прямым ссылкам из поиска и игнорируют советы по покупке других товаров, показанные на сайте. Поэтому, прежде чем начинать работу, мы определяем реальную причину проблемы клиента. И если она техническая, с удовольствием помогает решить её.

Когда искусственный интеллект получит сознание

Как мы уже писали выше, интеллекта компьютерам хватает, а вот сознание у них отсутствует. Как же создать «искусственный разум», который будет обладать сознанием и станет разумом безо всяких кавычек? «Сделать его уязвимым», — говорят исследователи Кинсон Ман и Антонио Дамасио.

Кадр из фильма Ex Machina, главная героиня которого — обладающий сознанием робот Ава / New York Times

По мнению ученых, ощущая собственную уязвимость и пытаясь избежать гибели (или, например, отключения), ИИ сможет познать ценность собственного существования и на ее основе получить полноценное сознание. Вынужденный думать о хрупкости существования и затрачивая усилия на поддержание целостности и функциональности «организма», искусственный интеллект получит гораздо больше возможностей для самосовершенствования.

Для реализации подобной концепции Ман и Дамасио предлагают скомбинировать методики машинного обучения и так называемую мягкую робототехнику (роботизированные устройства, созданные из мягких материалов, имитирующих биологическую ткань). Подобная комбинация создаст у роботов с AI определенное чувство собственной уязвимости и гомеостатическую реакцию на внешние изменения.

Что такое искусственный интеллект

Для начала давайте определимся с терминологией. Если вы представляете себе искусственный интеллект, как что-то, способное самостоятельно думать, принимать решения, и в целом проявлять признаки сознания, то спешим вас разочаровать. Практически все существующие на сегодняшний день системы даже и близко не «стоят» к такому определению ИИ. А те системы, что проявляют признаки подобной активности, на самом деле все-равно действуют в рамках заранее заданных алгоритмов.

Порой алгоритмы эти весьма и весьма продвинутые, но они остаются теми «рамками», в пределах которых работает ИИ. Никаких «вольностей» и уж тем более признаков сознания у машин нет. Это просто очень производительные программы. Но они «лучшие в своем деле». К тому же системы ИИ продолжают совершенствоваться. Да и устроены они совсем небанально. Даже если откинуть тот факт, что современный ИИ далек от совершенства, он имеет с нами очень много общего.

Мы только ждем бум искусственного интеллекта

Большинство называет искусственный интеллект будущим, многие сравнивают ИИ с научной фантастикой, а некоторые даже считают его полноценной частью нашей жизни.

Каждое из этих утверждений верно по-своему. В данном случае все зависит только от точки зрения. Нужно просто объяснить самому себе, что же вообще такое этот искусственный интеллект.

Некоторое время тому назад компьютерная программа Google DeepMind AlphaGo обыграла профессионала Ли Седола из Южной Кореи в азиатскую стратегическую настолку го.

А до этого аналогичные программы уже обходили профессиональных игроков в шахматы. Для этого они анализировали все возможные ходы и выбирали наиболее удачные.

Работы подобного софта стала возможной благодаря искусственному интеллекту, машинному и глубокому обучению. Второе понятие в данном случае — часть первого, а третье — часть второго.

Впервые об искусственном интеллекте заговорили на Дартмутских конференциях в 1956 году. Именно середину прошлого века принято считать временем рождения этого направления.

С того времени ИИ считали далеким будущим человечества, которое многие считали достаточно светлым, а некоторые — началом конца нашего рода по сценарию Терминатора.

D 2012-2017 годах случился переворот в понимании искусственного интеллекта, причиной которого оказался рост производительности современных вычислительных систем.

Кроме увеличения скорости работы современных процессоров на развитие ИИ повлияло распространение баз со снимками и другим контентом. Но обо всем по порядку.

Риск для человеческой цивилизации — есть ли он?

Риски, связанные с новыми технологиями, всегда существуют. Вопрос — в чем они заключаются. 

Может оказаться, что искусственные нейросети, достигнув определенного порога, выйдут на «плато» эффективности и не будут развиваться дальше. Или не оправдают надежд, если окажется, что ИИ в принципе не способен справиться с тем или иным классом задач, например творческого характера. Это может обернуться потерями трудозатрат и финансовых вложений.

Если же под риском понимать техногенные катастрофы или восстание машин — пока это нам вряд ли грозит. Говоря простыми словами, современные нейросети не способны обратиться против создателей — как нейроны в мозге, управляющие движением руки, не способны осознать себя как личность и нанести удары по собственному телу.

Тем не менее мы должны помнить, что ИИ — наша разработка. Мы их проектируем, создаем, обучаем, вкладываем «мысли». Значит, и ответственность за их поведение — на нас. 

Где можно получить образование по искусственному интеллекту?

GeekUniversity совместно с Mail.ru Group открыли первый в России факультет Искусственного интеллекта.

Для учебы достаточно школьных знаний. У вас будут все необходимые ресурсы и инструменты + целая программа по высшей математике. Не абстрактная, как в обычных вузах, а построенная на практике. Обучение познакомит вас с технологиями машинного обучения и нейронными сетями, научит решать настоящие бизнес-задачи.

После учебы вы сможете работать по специальностям:

  • ,
  • Машинное обучение,
  • Нейронные сети,
  • Анализ больших данных.

Особенности изучения искусственного интеллекта в GeekUniversity

Через полтора года практического обучения вы освоите современные технологии Data Science и приобретете компетенции, необходимые для работы в крупной IT-компании. Получите диплом о профессиональной переподготовке и сертификат.

Обучение проводится на основании государственной лицензии № 040485. По результатам успешного завершения обучения выдаем выпускникам диплом о профессиональной переподготовке и электронный сертификат на портале GeekBrains и Mail.ru Group.

Проектно-ориентированное обучение

Обучение происходит на практике, программы разрабатываются совместно со специалистами из компаний-лидеров рынка. Вы решите четыре проектные задачи по работе с данными и примените полученные навыки на практике. Полтора года обучения в GeekUniversity = полтора года реального опыта работы с большими данными для вашего резюме.

Наставник

В течение всего обучения у вас будет личный помощник-куратор. С ним вы сможете быстро разобраться со всеми проблемами, на которые в ином случае ушли бы недели. Работа с наставником удваивает скорость и качество обучения.

Основательная математическая подготовка

Профессионализм в Data Science — это на 50% умение строить математические модели и еще на 50% — работать с данными. GeekUniversity прокачает ваши знания в матанализе, которые обязательно проверят на собеседовании в любой серьезной компании.

GeekUniversity дает полтора года опыта работы для вашего резюме

В результате для вас откроется в 5 раз больше вакансий:

Для тех у кого нет опыта в программировании, предлагается начать с подготовительных курсов. Они позволят получить базовые знания для комфортного обучения по основной программе.

Ближайшее будущее

Футуролог Рэй Курцвейл заявил, что полноценный искусственный интеллект будет создан людьми в 2029 году. Многие считают эту оценку слишком пессимистичной. Уже в 2022 IBM и швейцарский политех из Лозанны обещают показать функционирующую модель головного мозга человека. Для понимания масштабов, можно привести следующие цифры:

  • Среднестатистический мозг – 8,6 млрд нейронов;
  • У каждого нейрона может быть в среднем около 2 тысяч отростков;
  • В целом это около 150 трлн синапсов;
  • Условно, каждый синапс – это тысячи молекулярных триггеров;
  • Грубо говоря, человеческий мозг состоит из 150 квадриллионов транзисторов, в то время как в самых мощных искусственных процессорах количество транзисторов едва превышает 10 млрд.

Конечно, при этом рабочая частота органического мозга сильно уступает машинному.

Однако человеческий мозг имеет естественные ограничения. Для его работы требуется много энергии (до 20% всех калорий, сжигаемых организмом), а размер не может быть в разы увеличен. В случае с рукотворным устройством этими лимитами можно пренебречь и создать куда более крупный аналог с любым энергопотреблением. Собственно, человек при всем желании не сможет осознать масштабы работы сети с миллионом нейронов (это как представить размеры галактики), а если их число увеличится в тысячи раз, то предсказать возможности подобной системы будет довольно затруднительно.

Ссылка на основную публикацию